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UV Curing has been used for many diverse applications

Until recently, Hg based UV lamps have primarily been utilized

Key Advantages of Hg based lamps:

 Mature technology

 Fast process speed (higher UV output)

 Low cost of ownership

Drawbacks:

 High electrical power consumption

 Ozone formation

 Presence of “Hg”



Status of UV LED Technology

P.K. Swain | RadTech | October 2015

INTRODUCTION

Page 4

White light LED manufacturing technology has been making steady 

progress

Associated manufacturing technology for UV LEDs have benefited

Some key benefits of LED technology are:

 Instant on-off

 Hg free

 Longer life

 Possible lower cost of ownership

UV LEDs has shown significant potential for UV curing applications

Though some progress has been made, substantial gaps still remain



Basis of Current Research - I
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UVLED systems with higher output and flexible working 

distance are beginning to emerge in the market

Until now, most existing formulations are optimized for 

broad band illumination

Since broad band LED sources are not imminent, special 

formulations, optimized for LED output needs to be 

developed



Basis of Current Research - II
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Additionally, exact interactions between LED wavelength, 

intensity, total dose, formulation‟s photo-absorption 

property, curing speed etc. need to be carefully considered 

for optimum performance

In this paper, we would present the curing effect as a 

function of:

 (i) LED intensity

 (ii) process speed

 (iii) total dose

 (iv) PI concentration etc. 



Experimental Set Up  - LED Lamp

Additionally, exact interactions 

between LED wavelength, Custom 

LED lamp

 395 nm

 High efficiency thermal 

management

 High density LED packaging

 High peak irradiance (> 25 W/cm2)

 Flexible optics

 Longer working distance
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Experimental Set Up  - Hg based Lamp

Broadband source (LightHammer® 6)

 Microwave driven electrode-less

 Standard  D bulb

 Cold reflector (dichroic)

 4 - 6 W/cm2

Standard conveyor (NO N2 inerting)
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Experimental Set Up - Lamps

Comparison of custom LED lamp to 

high power microwave lamp 

(LightHammer® 6)

 LED: higher peak irradiance over 

smaller area

 Microwave lamp: broader spatial 

distribution 
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Experimental Set Up – Clear Coat Chemistry

Urethane acrylates (BASF Laromer®)

 LR 9029 

 LR 9029 + 20% HDDA

 LR 8987 (LR 9029 + 30% HDDA)

 LR 9029 + 40% HDDA

 Variable viscosity with HDDA addition

 All solvents evaporated before UV exposure

Photoinitiator

 BASF Lucerin® TPO (1-10%)

 Co-initiator: ITX 

 Synergist: EDB

12 micron films on white cards 
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Maximum cure speed – LED at various % TPO
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Choice of ‘cure’ criterion:
Double bond conversion (via FTIR) showed NO correlation 
with the physical surface tack and therefore only surface 
tack was considered as a measure of final cure.
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Peak Irradiance vs Dose: @ lower TPO levels
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Dose vs Formulation Viscosity at 5% TPO (LED vs. Broadband) 
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Consumption of TPO: 60/40/4% TPO (LED irradiation)
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Consumption of TPO: Various viscosity mixtures (LED irradiation)
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Consumption of TPO: „Arrhenius‟ plots
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Consumption of TPO: Various viscosity mixtures (BB irradiation)

Similar non-linear 

consumption of TPO 

in 60/40/4% TPO 

mixture with entire 

BB spectrum

With only longer 

wavelengths         

(385-460nm) 

Second component 

fraction decreased 

(consistent TPO 

reduction) 
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Consumption of TPO: Summary

Two different mechanisms:

Mechanism 1

TPO consumption rate inconsistent

 At lower viscosities, increased 

diffusion and monomer (LED and BB 

irradiation)  

 Alleviated by increased viscosity OR 

additional long wavelengths

Competing reactions decrease TPO 

photo-polymerization efficiency

P.K. Swain | RadTech | October 2015 Data & Analysis: clear coats Page 18

h
• •+

320 340 360 380 400 420 440
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

2000 mJ

100 mJ

initial

 

 

A
B

S
O

R
B

A
N

C
E

WAVELENGTH (nm)

100/0 MIXTURE

2000 mJ

100 mJ

 

 

initial

60/40 MIXTURE

independent 

of viscosity

dependent 

of viscosity

POLYMERS



Consumption of TPO: Summary

(Unexpected) Mechanism 2

Increased absorption between 

320-365nm) implies reaction 

intermediate being formed 

 Presumed to be carbonyl 

containing group, given increased 

absorption band
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Additives (LED irradiation)

Results:

 Much higher maximum cure speeds possible (with higher TPO) 

 Peak power more important at lower TPO concentrations

 Addition of synergist is helpful

 (4% TPO + 1.5% EDB) appears to be the best compromise
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Wrap up

Several clear coat formulations and their curing kinetics were studied as a 

function of various TPO concentration when exposed to a monochromatic LED 

source (395 nm) and a broad band UV source

No correlations were observed between the surface tackiness and associated 

double bond conversion

Higher concentrations of TPO generally resulted in better cure when judged by 

surface tackiness

In all cases, a minimum of two passes were needed to achieve good cure

For higher HDDA concentration high intensity (25 W/cm2) LED lamps 

performed better than the broad band Hg lamps with lower intensity (4-6 

W/cm2)

This was attributed to the higher intensity
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Wrap up

Inconsistent TPO were observed at lower viscosity, possibly due to increased 

diffusion and monomers

TPO absorption studies indicated evaluation of two independent reactions

Increased absorption at shorter wavelength indicated formations of reaction 

intermediate (carbonyl containing group)

More thorough investigation needs to be conducted for further understanding
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Thank you
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